3.531 \(\int \frac{\cot ^4(e+f x)}{(a+b \sin ^2(e+f x))^{3/2}} \, dx\)

Optimal. Leaf size=297 \[ \frac{(7 a+8 b) \cot (e+f x) \sqrt{a+b \sin ^2(e+f x)}}{3 a^3 f}-\frac{(3 a+4 b) \cot (e+f x) \csc ^2(e+f x) \sqrt{a+b \sin ^2(e+f x)}}{3 a^2 b f}-\frac{4 (a+b) \sqrt{\cos ^2(e+f x)} \sec (e+f x) \sqrt{\frac{b \sin ^2(e+f x)}{a}+1} F\left (\sin ^{-1}(\sin (e+f x))|-\frac{b}{a}\right )}{3 a^2 f \sqrt{a+b \sin ^2(e+f x)}}+\frac{(7 a+8 b) \sqrt{\cos ^2(e+f x)} \sec (e+f x) \sqrt{a+b \sin ^2(e+f x)} E\left (\sin ^{-1}(\sin (e+f x))|-\frac{b}{a}\right )}{3 a^3 f \sqrt{\frac{b \sin ^2(e+f x)}{a}+1}}+\frac{(a+b) \cot (e+f x) \csc ^2(e+f x)}{a b f \sqrt{a+b \sin ^2(e+f x)}} \]

[Out]

((a + b)*Cot[e + f*x]*Csc[e + f*x]^2)/(a*b*f*Sqrt[a + b*Sin[e + f*x]^2]) + ((7*a + 8*b)*Cot[e + f*x]*Sqrt[a +
b*Sin[e + f*x]^2])/(3*a^3*f) - ((3*a + 4*b)*Cot[e + f*x]*Csc[e + f*x]^2*Sqrt[a + b*Sin[e + f*x]^2])/(3*a^2*b*f
) + ((7*a + 8*b)*Sqrt[Cos[e + f*x]^2]*EllipticE[ArcSin[Sin[e + f*x]], -(b/a)]*Sec[e + f*x]*Sqrt[a + b*Sin[e +
f*x]^2])/(3*a^3*f*Sqrt[1 + (b*Sin[e + f*x]^2)/a]) - (4*(a + b)*Sqrt[Cos[e + f*x]^2]*EllipticF[ArcSin[Sin[e + f
*x]], -(b/a)]*Sec[e + f*x]*Sqrt[1 + (b*Sin[e + f*x]^2)/a])/(3*a^2*f*Sqrt[a + b*Sin[e + f*x]^2])

________________________________________________________________________________________

Rubi [A]  time = 0.374123, antiderivative size = 297, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 8, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.32, Rules used = {3196, 468, 583, 524, 426, 424, 421, 419} \[ \frac{(7 a+8 b) \cot (e+f x) \sqrt{a+b \sin ^2(e+f x)}}{3 a^3 f}-\frac{(3 a+4 b) \cot (e+f x) \csc ^2(e+f x) \sqrt{a+b \sin ^2(e+f x)}}{3 a^2 b f}-\frac{4 (a+b) \sqrt{\cos ^2(e+f x)} \sec (e+f x) \sqrt{\frac{b \sin ^2(e+f x)}{a}+1} F\left (\sin ^{-1}(\sin (e+f x))|-\frac{b}{a}\right )}{3 a^2 f \sqrt{a+b \sin ^2(e+f x)}}+\frac{(7 a+8 b) \sqrt{\cos ^2(e+f x)} \sec (e+f x) \sqrt{a+b \sin ^2(e+f x)} E\left (\sin ^{-1}(\sin (e+f x))|-\frac{b}{a}\right )}{3 a^3 f \sqrt{\frac{b \sin ^2(e+f x)}{a}+1}}+\frac{(a+b) \cot (e+f x) \csc ^2(e+f x)}{a b f \sqrt{a+b \sin ^2(e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[Cot[e + f*x]^4/(a + b*Sin[e + f*x]^2)^(3/2),x]

[Out]

((a + b)*Cot[e + f*x]*Csc[e + f*x]^2)/(a*b*f*Sqrt[a + b*Sin[e + f*x]^2]) + ((7*a + 8*b)*Cot[e + f*x]*Sqrt[a +
b*Sin[e + f*x]^2])/(3*a^3*f) - ((3*a + 4*b)*Cot[e + f*x]*Csc[e + f*x]^2*Sqrt[a + b*Sin[e + f*x]^2])/(3*a^2*b*f
) + ((7*a + 8*b)*Sqrt[Cos[e + f*x]^2]*EllipticE[ArcSin[Sin[e + f*x]], -(b/a)]*Sec[e + f*x]*Sqrt[a + b*Sin[e +
f*x]^2])/(3*a^3*f*Sqrt[1 + (b*Sin[e + f*x]^2)/a]) - (4*(a + b)*Sqrt[Cos[e + f*x]^2]*EllipticF[ArcSin[Sin[e + f
*x]], -(b/a)]*Sec[e + f*x]*Sqrt[1 + (b*Sin[e + f*x]^2)/a])/(3*a^2*f*Sqrt[a + b*Sin[e + f*x]^2])

Rule 3196

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.)*tan[(e_.) + (f_.)*(x_)]^(m_), x_Symbol] :> With[{ff = FreeF
actors[Sin[e + f*x], x]}, Dist[(ff^(m + 1)*Sqrt[Cos[e + f*x]^2])/(f*Cos[e + f*x]), Subst[Int[(x^m*(a + b*ff^2*
x^2)^p)/(1 - ff^2*x^2)^((m + 1)/2), x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2]
 &&  !IntegerQ[p]

Rule 468

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> -Simp[((c*b -
 a*d)*(e*x)^(m + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q - 1))/(a*b*e*n*(p + 1)), x] + Dist[1/(a*b*n*(p + 1)), I
nt[(e*x)^m*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q - 2)*Simp[c*(c*b*n*(p + 1) + (c*b - a*d)*(m + 1)) + d*(c*b*n*(p
+ 1) + (c*b - a*d)*(m + n*(q - 1) + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b*c - a*d, 0] &
& IGtQ[n, 0] && LtQ[p, -1] && GtQ[q, 1] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 583

Int[((g_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)),
x_Symbol] :> Simp[(e*(g*x)^(m + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(a*c*g*(m + 1)), x] + Dist[1/(a*c*
g^n*(m + 1)), Int[(g*x)^(m + n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[a*f*c*(m + 1) - e*(b*c + a*d)*(m + n + 1) - e
*n*(b*c*p + a*d*q) - b*e*d*(m + n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p, q}, x] &&
 IGtQ[n, 0] && LtQ[m, -1]

Rule 524

Int[((e_) + (f_.)*(x_)^(n_))/(Sqrt[(a_) + (b_.)*(x_)^(n_)]*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/
b, Int[Sqrt[a + b*x^n]/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/(Sqrt[a + b*x^n]*Sqrt[c + d*x^n]),
x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &&  !(EqQ[n, 2] && ((PosQ[b/a] && PosQ[d/c]) || (NegQ[b/a] && (PosQ[
d/c] || (GtQ[a, 0] && ( !GtQ[c, 0] || SimplerSqrtQ[-(b/a), -(d/c)]))))))

Rule 426

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[a + b*x^2]/Sqrt[1 + (b*x^2)/a]
, Int[Sqrt[1 + (b*x^2)/a]/Sqrt[c + d*x^2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &&  !GtQ
[a, 0]

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 421

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Dist[Sqrt[1 + (d*x^2)/c]/Sqrt[c + d*
x^2], Int[1/(Sqrt[a + b*x^2]*Sqrt[1 + (d*x^2)/c]), x], x] /; FreeQ[{a, b, c, d}, x] &&  !GtQ[c, 0]

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rubi steps

\begin{align*} \int \frac{\cot ^4(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx &=\frac{\left (\sqrt{\cos ^2(e+f x)} \sec (e+f x)\right ) \operatorname{Subst}\left (\int \frac{\left (1-x^2\right )^{3/2}}{x^4 \left (a+b x^2\right )^{3/2}} \, dx,x,\sin (e+f x)\right )}{f}\\ &=\frac{(a+b) \cot (e+f x) \csc ^2(e+f x)}{a b f \sqrt{a+b \sin ^2(e+f x)}}-\frac{\left (\sqrt{\cos ^2(e+f x)} \sec (e+f x)\right ) \operatorname{Subst}\left (\int \frac{-3 a-4 b+(2 a+3 b) x^2}{x^4 \sqrt{1-x^2} \sqrt{a+b x^2}} \, dx,x,\sin (e+f x)\right )}{a b f}\\ &=\frac{(a+b) \cot (e+f x) \csc ^2(e+f x)}{a b f \sqrt{a+b \sin ^2(e+f x)}}-\frac{(3 a+4 b) \cot (e+f x) \csc ^2(e+f x) \sqrt{a+b \sin ^2(e+f x)}}{3 a^2 b f}+\frac{\left (\sqrt{\cos ^2(e+f x)} \sec (e+f x)\right ) \operatorname{Subst}\left (\int \frac{-b (7 a+8 b)+b (3 a+4 b) x^2}{x^2 \sqrt{1-x^2} \sqrt{a+b x^2}} \, dx,x,\sin (e+f x)\right )}{3 a^2 b f}\\ &=\frac{(a+b) \cot (e+f x) \csc ^2(e+f x)}{a b f \sqrt{a+b \sin ^2(e+f x)}}+\frac{(7 a+8 b) \cot (e+f x) \sqrt{a+b \sin ^2(e+f x)}}{3 a^3 f}-\frac{(3 a+4 b) \cot (e+f x) \csc ^2(e+f x) \sqrt{a+b \sin ^2(e+f x)}}{3 a^2 b f}-\frac{\left (\sqrt{\cos ^2(e+f x)} \sec (e+f x)\right ) \operatorname{Subst}\left (\int \frac{-a b (3 a+4 b)-b^2 (7 a+8 b) x^2}{\sqrt{1-x^2} \sqrt{a+b x^2}} \, dx,x,\sin (e+f x)\right )}{3 a^3 b f}\\ &=\frac{(a+b) \cot (e+f x) \csc ^2(e+f x)}{a b f \sqrt{a+b \sin ^2(e+f x)}}+\frac{(7 a+8 b) \cot (e+f x) \sqrt{a+b \sin ^2(e+f x)}}{3 a^3 f}-\frac{(3 a+4 b) \cot (e+f x) \csc ^2(e+f x) \sqrt{a+b \sin ^2(e+f x)}}{3 a^2 b f}-\frac{\left (4 (a+b) \sqrt{\cos ^2(e+f x)} \sec (e+f x)\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x^2} \sqrt{a+b x^2}} \, dx,x,\sin (e+f x)\right )}{3 a^2 f}+\frac{\left ((7 a+8 b) \sqrt{\cos ^2(e+f x)} \sec (e+f x)\right ) \operatorname{Subst}\left (\int \frac{\sqrt{a+b x^2}}{\sqrt{1-x^2}} \, dx,x,\sin (e+f x)\right )}{3 a^3 f}\\ &=\frac{(a+b) \cot (e+f x) \csc ^2(e+f x)}{a b f \sqrt{a+b \sin ^2(e+f x)}}+\frac{(7 a+8 b) \cot (e+f x) \sqrt{a+b \sin ^2(e+f x)}}{3 a^3 f}-\frac{(3 a+4 b) \cot (e+f x) \csc ^2(e+f x) \sqrt{a+b \sin ^2(e+f x)}}{3 a^2 b f}+\frac{\left ((7 a+8 b) \sqrt{\cos ^2(e+f x)} \sec (e+f x) \sqrt{a+b \sin ^2(e+f x)}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1+\frac{b x^2}{a}}}{\sqrt{1-x^2}} \, dx,x,\sin (e+f x)\right )}{3 a^3 f \sqrt{1+\frac{b \sin ^2(e+f x)}{a}}}-\frac{\left (4 (a+b) \sqrt{\cos ^2(e+f x)} \sec (e+f x) \sqrt{1+\frac{b \sin ^2(e+f x)}{a}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x^2} \sqrt{1+\frac{b x^2}{a}}} \, dx,x,\sin (e+f x)\right )}{3 a^2 f \sqrt{a+b \sin ^2(e+f x)}}\\ &=\frac{(a+b) \cot (e+f x) \csc ^2(e+f x)}{a b f \sqrt{a+b \sin ^2(e+f x)}}+\frac{(7 a+8 b) \cot (e+f x) \sqrt{a+b \sin ^2(e+f x)}}{3 a^3 f}-\frac{(3 a+4 b) \cot (e+f x) \csc ^2(e+f x) \sqrt{a+b \sin ^2(e+f x)}}{3 a^2 b f}+\frac{(7 a+8 b) \sqrt{\cos ^2(e+f x)} E\left (\sin ^{-1}(\sin (e+f x))|-\frac{b}{a}\right ) \sec (e+f x) \sqrt{a+b \sin ^2(e+f x)}}{3 a^3 f \sqrt{1+\frac{b \sin ^2(e+f x)}{a}}}-\frac{4 (a+b) \sqrt{\cos ^2(e+f x)} F\left (\sin ^{-1}(\sin (e+f x))|-\frac{b}{a}\right ) \sec (e+f x) \sqrt{1+\frac{b \sin ^2(e+f x)}{a}}}{3 a^2 f \sqrt{a+b \sin ^2(e+f x)}}\\ \end{align*}

Mathematica [A]  time = 4.01837, size = 199, normalized size = 0.67 \[ \frac{\frac{\cot (e+f x) \csc ^2(e+f x) \left (-4 \left (4 a^2+11 a b+8 b^2\right ) \cos (2 (e+f x))+8 a^2+b (7 a+8 b) \cos (4 (e+f x))+37 a b+24 b^2\right )}{2 \sqrt{2}}-8 a (a+b) \sqrt{\frac{2 a-b \cos (2 (e+f x))+b}{a}} F\left (e+f x\left |-\frac{b}{a}\right .\right )+2 a (7 a+8 b) \sqrt{\frac{2 a-b \cos (2 (e+f x))+b}{a}} E\left (e+f x\left |-\frac{b}{a}\right .\right )}{6 a^3 f \sqrt{2 a-b \cos (2 (e+f x))+b}} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[e + f*x]^4/(a + b*Sin[e + f*x]^2)^(3/2),x]

[Out]

(((8*a^2 + 37*a*b + 24*b^2 - 4*(4*a^2 + 11*a*b + 8*b^2)*Cos[2*(e + f*x)] + b*(7*a + 8*b)*Cos[4*(e + f*x)])*Cot
[e + f*x]*Csc[e + f*x]^2)/(2*Sqrt[2]) + 2*a*(7*a + 8*b)*Sqrt[(2*a + b - b*Cos[2*(e + f*x)])/a]*EllipticE[e + f
*x, -(b/a)] - 8*a*(a + b)*Sqrt[(2*a + b - b*Cos[2*(e + f*x)])/a]*EllipticF[e + f*x, -(b/a)])/(6*a^3*f*Sqrt[2*a
 + b - b*Cos[2*(e + f*x)]])

________________________________________________________________________________________

Maple [A]  time = 1.395, size = 353, normalized size = 1.2 \begin{align*} -{\frac{1}{3\,{a}^{3} \left ( \sin \left ( fx+e \right ) \right ) ^{3}\cos \left ( fx+e \right ) f} \left ( 4\,{\it EllipticF} \left ( \sin \left ( fx+e \right ) ,\sqrt{-{\frac{b}{a}}} \right ) \sqrt{ \left ( \cos \left ( fx+e \right ) \right ) ^{2}}\sqrt{{\frac{a+b \left ( \sin \left ( fx+e \right ) \right ) ^{2}}{a}}}{a}^{2} \left ( \sin \left ( fx+e \right ) \right ) ^{3}+4\,b\sqrt{ \left ( \cos \left ( fx+e \right ) \right ) ^{2}}\sqrt{{\frac{a+b \left ( \sin \left ( fx+e \right ) \right ) ^{2}}{a}}}{\it EllipticF} \left ( \sin \left ( fx+e \right ) ,\sqrt{-{\frac{b}{a}}} \right ) a \left ( \sin \left ( fx+e \right ) \right ) ^{3}-7\,{\it EllipticE} \left ( \sin \left ( fx+e \right ) ,\sqrt{-{\frac{b}{a}}} \right ) \sqrt{ \left ( \cos \left ( fx+e \right ) \right ) ^{2}}\sqrt{{\frac{a+b \left ( \sin \left ( fx+e \right ) \right ) ^{2}}{a}}}{a}^{2} \left ( \sin \left ( fx+e \right ) \right ) ^{3}-8\,{\it EllipticE} \left ( \sin \left ( fx+e \right ) ,\sqrt{-{\frac{b}{a}}} \right ) \sqrt{ \left ( \cos \left ( fx+e \right ) \right ) ^{2}}\sqrt{{\frac{a+b \left ( \sin \left ( fx+e \right ) \right ) ^{2}}{a}}}ab \left ( \sin \left ( fx+e \right ) \right ) ^{3}+7\,ab \left ( \sin \left ( fx+e \right ) \right ) ^{6}+8\,{b}^{2} \left ( \sin \left ( fx+e \right ) \right ) ^{6}+4\,{a}^{2} \left ( \sin \left ( fx+e \right ) \right ) ^{4}-3\,ab \left ( \sin \left ( fx+e \right ) \right ) ^{4}-8\,{b}^{2} \left ( \sin \left ( fx+e \right ) \right ) ^{4}-5\,{a}^{2} \left ( \sin \left ( fx+e \right ) \right ) ^{2}-4\,ab \left ( \sin \left ( fx+e \right ) \right ) ^{2}+{a}^{2} \right ){\frac{1}{\sqrt{a+b \left ( \sin \left ( fx+e \right ) \right ) ^{2}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(f*x+e)^4/(a+b*sin(f*x+e)^2)^(3/2),x)

[Out]

-1/3*(4*EllipticF(sin(f*x+e),(-1/a*b)^(1/2))*(cos(f*x+e)^2)^(1/2)*((a+b*sin(f*x+e)^2)/a)^(1/2)*a^2*sin(f*x+e)^
3+4*b*(cos(f*x+e)^2)^(1/2)*((a+b*sin(f*x+e)^2)/a)^(1/2)*EllipticF(sin(f*x+e),(-1/a*b)^(1/2))*a*sin(f*x+e)^3-7*
EllipticE(sin(f*x+e),(-1/a*b)^(1/2))*(cos(f*x+e)^2)^(1/2)*((a+b*sin(f*x+e)^2)/a)^(1/2)*a^2*sin(f*x+e)^3-8*Elli
pticE(sin(f*x+e),(-1/a*b)^(1/2))*(cos(f*x+e)^2)^(1/2)*((a+b*sin(f*x+e)^2)/a)^(1/2)*a*b*sin(f*x+e)^3+7*a*b*sin(
f*x+e)^6+8*b^2*sin(f*x+e)^6+4*a^2*sin(f*x+e)^4-3*a*b*sin(f*x+e)^4-8*b^2*sin(f*x+e)^4-5*a^2*sin(f*x+e)^2-4*a*b*
sin(f*x+e)^2+a^2)/a^3/sin(f*x+e)^3/cos(f*x+e)/(a+b*sin(f*x+e)^2)^(1/2)/f

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)^4/(a+b*sin(f*x+e)^2)^(3/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{-b \cos \left (f x + e\right )^{2} + a + b} \cot \left (f x + e\right )^{4}}{b^{2} \cos \left (f x + e\right )^{4} - 2 \,{\left (a b + b^{2}\right )} \cos \left (f x + e\right )^{2} + a^{2} + 2 \, a b + b^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)^4/(a+b*sin(f*x+e)^2)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(-b*cos(f*x + e)^2 + a + b)*cot(f*x + e)^4/(b^2*cos(f*x + e)^4 - 2*(a*b + b^2)*cos(f*x + e)^2 + a
^2 + 2*a*b + b^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cot ^{4}{\left (e + f x \right )}}{\left (a + b \sin ^{2}{\left (e + f x \right )}\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)**4/(a+b*sin(f*x+e)**2)**(3/2),x)

[Out]

Integral(cot(e + f*x)**4/(a + b*sin(e + f*x)**2)**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cot \left (f x + e\right )^{4}}{{\left (b \sin \left (f x + e\right )^{2} + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)^4/(a+b*sin(f*x+e)^2)^(3/2),x, algorithm="giac")

[Out]

integrate(cot(f*x + e)^4/(b*sin(f*x + e)^2 + a)^(3/2), x)